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Abstract
We describe a thermodynamic principle determining the phenomenon of
protein self-assembly controlled by elastic stresses. This principle is based
on the Gibbs–Dühem-like relationship between the chemical potential of
the aggregated molecules and the stresses produced by forces acting on a
protein aggregate. We present two biological systems whose operation can
be driven by this principle: actin filament, a polymerizing processive capping
by proteins of the formin family, and focal adhesions mediating a mechanical
link between the cytoskeleton and extracellular substrates. We describe the
major phenomenology of these systems and overview recent models, aimed at
understanding the mechanisms of their functioning.

(Some figures in this article are in colour only in the electronic version)

The functioning of a living being is largely due to a complex muscle system, which enables
the generation of forces and the performance of motions. Analogously to highly developed
organisms, the life and physiology of elementary biological cells vitally depend on an
intracellular system that generates and sustains mechanical forces, and that consists of a
cytoskeleton and molecular motors [1, 2]. Mechanical stresses produced by the intracellular
force-generating systems largely determine the cell architecture, and underlie such essential
biological phenomena as cell spreading and motility, cytokinesis, and transport of intracellular
protein and membrane carriers [1]. Understanding the interplay between the cell structure and
the intracellular forces is one of the major challenges of cell biology.

Here we address only a small part of this broad complex of problems, and present
a thermodynamical consideration of the relationship between the elastic stresses generated
within cells and self-assembly of intracellular super-molecular aggregates. Specifically, we
consider how the major thermodynamic characteristic, the critical concentration of the self-
assembling molecules, is modulated by the elastic stresses. We first present a simple and
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fundamental principle underlying the phenomenon of stress-controlled self-assembly, which
is based on the Gibbs–Dühem relationship [3] and was first applied to the treatment of
intracellular polymers by Hill about two decades ago [4]. We then consider two interrelated
classes of intracellular structures, whose assembly–disassembly behaviour, referred to as a
mechanosensitive behaviour, has been suggested to be based on this principle [5–7]. The first
class comprises focal adhesions (FA) mediating a physical link between the cytoskeleton and
the extracellular matrices and substrates [6]. The second class includes complexes of actin
filaments with newly discovered proteins called formins [5, 7]. These complexes generate the
formation of linear actin bundles that serve as ‘railways’ for intracellular transport and may
play a role in the generation of actin-myosin stress fibres mounting the focal adhesions.

Thermodynamics of force-induced self-assembly. To grasp the essence of the effects
of pulling forces on self-assembly, consider an aqueous solution of identical molecules.
These molecules exhibit attractive interaction, which can lead to their aggregation into a
condensed phase that is able to sustain elastic stresses. The thermodynamic state of the
system is determined by the chemical potentials of the molecules in the aggregated and non-
aggregated (monomeric) state, denoted respectively by µagg and µfree. According to Gibbs
thermodynamics, the molecules remain in a monomeric state if µfree < µagg. The onset of
aggregation requires the chemical potential in the aggregated state to be equal to or smaller
than that of the monomers, µfree � µagg.

We assume that, once an aggregate starts forming, pulling forces are applied to its surface
and produce elastic stresses within the aggregate (see below for the specific mechanism of
force application). Here we will consider only the simplest cases where the inter-aggregate
stresses are isotropic. Exact consideration of a general case of anisotropic stresses requires a
more involved approach and is beyond the scope of the present review.

The chemical potential of non-aggregated molecules can be presented as

µfree = µ0
free + β ln

c

cW
, (1)

where c is the molar concentration of monomers in the aqueous solution, cW ≈ 55 M is the
molar concentration of water molecules, β ≈ 4 ×10−21 J ≈ 0.6 kcal mol−1 is a product of the
Boltzmann constant and the absolute temperature, and µfree is the concentration-independent
part accounting for the free energy of a monomer interaction with the surrounding medium
and referred to below as the standard chemical potential in the monomeric state. The second
term in (1) represents the contribution to µagg by the entropy of mixing of the monomers in
the aqueous solution. Equation (1) is valid for cases of very low concentrations, c/cW � 1,
relevant for intracellular conditions where the protein concentrations are in micromolar ranges.

In the absence of the pulling forces, the chemical potential of the self-assembled molecules
that accounts for the interaction between them within the aggregate will be denoted by µ0

agg
and referred to as the standard chemical potential in the aggregated state.

External forces produce elastic stress within the aggregate. The change of the chemical
potential of the aggregated molecules, dµagg, resulting from the stress change is given by the
Gibbs–Dühem-like relationship [3, 8]

dµagg = −�

N
dT, (2)

where N is the number of the aggregated molecules, T represents stress within the aggregate,
and � is the extensive measure of the aggregate strain conjugated to the stress T . If the
aggregate has to be seen as a three-dimensional structure whose surface is subjected to an
isotropic normal force, � has a meaning of the aggregate volume, � = V , and the stress T is a
volume tension, having dimensionality of force per unit area [T ] = N m−2. In the case where
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the aggregate can be represented by a surface element subject to an isotropic two-dimensional
force, � = A is the surface area, and T = σ is a lateral tension with dimensionality of force
per unit length [σ ] = N m−1. If the aggregate is a linear polymer whose ends are subject to a
pulling or pushing force, � = L is the polymer length, while T = γ is a linear tension with
dimensionality of force [γ ] = N . Finally, in the case where the aggregate is subject to other
types of stress such as shear stress or torsion stress, � represents a corresponding extensive
variable such as total torsion angle. The value �

N in equation (2) is an intensive value having
a meaning of a molecular dimension ω within the aggregate.

To obtain from equation (2) an explicit expression for the chemical potential µagg, we
assume a linear relationship (Hooke law) between the stress T and the molecular dimension
ω:

T = κ
ω − ω0

ω0
, (3)

where ω0 is the molecular dimension at zero tension and κ is the rigidity of the aggregate. The
relationship equation (3) is expected to be valid for small deformations,

|ω − ω0|/ω0 � 1. (4)

Integration of equation (2) while accounting for equation (3) gives an explicit expression for
the chemical potential:

µagg = µ0
agg − T ω0 − 1

2

T 2

κ
ω0. (5)

The two contributions in equation (5) show that a positive stress T > 0 produced, for example,
by pulling forces acting on the aggregate boundaries reduces the chemical potential of the
aggregated molecules µagg, while a negative stress, T < 0, increases µagg. The relationship
presented in equation (5) for the one-dimensional case of a linear polymer has been derived
in [4].

We use here the definition of the critical concentration c∗ as the monomer concentration
which is needed for onset of polymerization. (Note that for non-equilibrium polymers such as
actin filament, whose constituent monomers hydrolyse ATP in the course of filament growing,
the critical concentration in our definition corresponds to a binding constant of monomers to
the polymer end. In this case the critical concentration has to be determined separately for
each filament end [9].) The critical concentration can be determined from the condition of
equality of the chemical potentials, µfree = µagg, and equations (1) and (5), by

c = c∗
0 exp

(
− T ω0 + 1

2
T 2

κ
ω0

β

)
(6)

where

c∗
0 = cW exp

(
µ0

agg − µ0
free

β

)
(7)

is the critical concentration in the absence of stresses.
According to equation (6), positive elastic stress, T > 0, decreases the critical

concentration, c∗, hence favouring the molecular self-assembly. A negative elastic stress,
T < 0, disfavours the aggregation process which is manifested in an increase of the critical
concentration c∗.

The simple analysis above shows that the elastic stress produced by external forces
applied to the aggregate boundaries can control the molecular self-assembly. If the
monomer concentration is lower than the critical concentration in the absence of the stresses
(equation (7)), c < c∗

0, molecules will not self-assemble, or the existing aggregate will undergo
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disassembly. After generation of a sufficiently strong stress, according to equation (6), the
critical concentration decreases and becomes smaller than the actual monomer concentration,
c > c∗. As a result, the aggregation process becomes thermodynamically favourable and can
be initiated. Once the forces are lifted the formed aggregates will disintegrate again.

In the following we consider two intracellular systems, where the stress-controlled
aggregation can play a major role.

1. The role of elastic stresses in actin polymerization upon processive capping by formin

1.1. Actin polymerization and processive capping by formin

Actin polymerization drives fundamental cellular processes such as locomotion, cytokinesis
and adhesion. Forces developed as a result of actin polymerization are responsible for different
forms of cell motility, and in particular, extension of cell protrusions [9, 10].

Due to an asymmetric structure of actin monomers, an actin filament has a polarity,
its two ends having different binding constants for monomeric actin and different
polymerization/depolymerization rates [9]. The barbed end (or the plus end) of an actin filament
polymerizes faster and has higher binding constants for ATP-actin than the pointed end (or the
minus end). Structurally, an actin filament can be described as consisting of two right-handed
helical strands of about 71.5 nm pitch distance. Alternatively, the filament structure can be
seen as a single left-handed helix with a short pitch of 5.9 nm pitch distance [11–13].

Actin polymerization is tightly regulated by several intracellular proteins,among which the
most important are Arp2/3 complex nucleating actin filament polymerization and branching,
barbed end capping proteins, which stop actin polymerization at the barbed end; and
ADF/cofilin, which promotes actin disassembly by severing the filaments (see, e.g. [14]).

Recently discovered multidomain proteins of the formin family can both nucleate and
cap actin filaments [15, 16]. After the nucleation of actin polymerization, formins remain
persistently bound to the barbed ends of the growing filaments [17–21] walking with them
during the course of polymerization [22]. Due to this property, formins are called ‘processive’
(or ‘leaky’) cappers [17], which, in contrast to the usual capping proteins, allow the actin
polymerization (and depolymerization) in the barbed direction.

Crystallographic, NMR and biochemical data indicate that a minimal protein module able
to perform processive capping is a dimer of the formin homology domain FH2 [23–25]. While
being attached to the filament barbed end, an FH2 dimer allows for barbed end polymerization
at rates equal to or lower than that of a pure actin filament [17]. Acceleration of the processive
capping polymerization requires, in addition to the FH2 dimer, a complex of the formin
homology domain FH1 and a profilin protein [18, 21].

FH2 dimer has been suggested to be composed of two structural units, termed actin
bridge elements, that form a closed ring-like structure due to reciprocal connections by
flexible tethers [24]. It was proposed that the FH2 ring at the barbed end can exist in two
configurations, termed closed and open, that differ in the relative position and orientation of
the two bridges [24]. In the closed configuration, illustrated in figure 1(a), the barbed end is
blocked for addition of new actin monomers, while in the open configuration, one of the bridge
elements is available for binding a new actin monomer (figure 1(b)) [24]. Movement of the
FH2 ring along the barbed end in the course of transition from the closed to the open state
corresponds to the stair-stepping scenario, the term proposed in [25].

Because of the helical structure of the actin filament, the stair-stepping requires the FH2
to rotate relative to the filament [26]. Each stair-stepping step is coupled to rotation of the
formin dimer by ≈14◦ with respect to the bulk of the filament, in the direction of twist of the
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Top view
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Figure 1. Stair-stepping and screw modes of processive capping. Actin monomers are represented
by spheres, and the formin FH2 bridges are shown as blue and green elongated bodies around the
filament. Rotation of the orientation of FH2 with respect to the bulk of the filament is represented by
red arrows. (a) The closed state, prohibiting insertion of new actin monomers to the filament. Each
FH2 bridge binds two actin subunits of the filament end. The green bridge binds the protruding
(actin 1) and the penultimate (actin 2) subunits, while the second, blue, bridge binds the actin 2 and
actin 3 subunits. (b) The stair-stepping mode of transition from the closed state to an open state
capable of actin polymerization. The blue bridge migrates from actins 2 and 3 to actin 1 and exposes
its post domain for insertion of a new actin monomer. The direction of rotation of the FH2 dimer
in this mode is that of twist of the long-pitch actin helix. The rotation angle is ∼14◦. (c) Transition
to an open state through the screw mode. The two bridges of FH2 dimer undergo a screw-like
motion around the filament until they bind in the new position. The post domain of the green
bridge is exposed for insertion of a new actin monomer. The FH2 dimer rotates in the direction of
the short-pitch actin helix, which is opposite to the rotation direction of the stair-stepping mode.
The rotation angle in the screw mode is ∼−166◦. Reproduced from The Journal of Cell Biology
(2005) 170 889–93 with copyright permission of The Rockerfeller University Press.

long-pitch actin helices (figure 1(b)). A persistent rotation in one direction would be difficult
to reconcile with the assembly of cross-linked bundles of actin filaments [26] in budding
yeast [27] and from adherent junctions [28]. A continuous turning of the filament ends with
respect to the filament bodies, which are interconnected within the bundles, would generate an
accumulation of elastic torsion strains and stresses in the system, which would be incompatible
with continuous polymerization, and generate filament supercoiling. Attempts to observe a
turning of the bulks of polymerizing actin filaments with respect to their formin caps have
been undertaken in vitro in one-filament experiments where the FH2 cap was attached to the
substrate [21]. The experiments revealed neither persistent filament rotation with respect to
the substrate, nor filament supercoiling.

The ‘rotation paradox’ of the stair-stepping scenario of actin polymerization upon
processive capping led to a suggestion of another mode of formin behaviour on the barbed
end called the screw mode [7]. Within the screw mode, FH2 ring moves along the short-pitch
actin helix (figure 1(c)). The twist direction of the short-pitch actin helix is opposite to that of
the long-pitch helix [11]. Therefore, rotation of the FH2 dimer in the screw mode is opposite
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to that of the stair-stepping mode. The transition from the closed to the open state within the
screw mode is coupled to rotation of the FH2 dimer with respect to the bulk of the filament by
≈166◦ (figure 1(c)) [7].

1.2. Optimal regime of processive capping and the dependence of the critical concentration
on torsion stresses

To find the optimal regime of processive capping involving the stair-stepping and screw modes,
analysis of elastic torsion deformations of the system has been performed [7]. Here, we present
the results of the work [7] in full detail and use them for determination of the interplay between
the critical concentration and the elastic stresses accumulated within the filament.

We formulate an elastic torsion model for an actin filament capped at its barbed end by a
formin dimer, which is attached by an elastic link to a substrate. We calculate the energy that this
system accumulates in the course of polymerization and find the most energetically favourable
behaviour of the formin cap in the course of processive capping. Based on determination of
the elastic torsion energy, we analyse the changes of the critical concentration.

1.3. Energy of filament torsion

Rotation of formin with respect to the filament pointed end will be referred to as the filament
torsion. We propose that in the course of polymerization the formin dimer can behave in either
stair-stepping or screw mode. One stair-stepping step of polymerization results in a torsion
change of φSS = 14◦, while one screw step leads to a torsion change of φSCR = −166◦. The
numbers of the stair-stepping and screw steps will be denoted by n and m, respectively. The
torsion angle resulting from unconstrained rotation equals φS = nφSS + mφSCR, and will be
referred to as the spontaneous torsion angle. Each polymerization step leads to the filament
elongation by λ = 2.75 nm [12].

We assume that during the first n0 + m0 steps of polymerization there are no constraints
imposed on the relative rotation of the filament ends, so that the accumulated torsion angle, φ0,
is equal to its spontaneous value φ0 = φ0S = n0φSS +m0φSCR, and the filament length reaches a
value L0 = (n0 + m0)λ. Further polymerization proceeds upon fixation of the filament pointed
end and attachment of the formin cap to a substrate (a prototype of such situation is represented
by the experimental design of [21]), and, hence, results in accumulation of the elastic stress
related to torsion. The next 	n stair-stepping and 	m screw steps generate the torsion angle
	φ and the filament elongation 	L = (	n + 	m)λ.

The energy of torsion deformation FFIL of a filament of length L can be presented as

FFIL = 1

2
C L

(
φ − φS

L

)2

, (8)

where φ is the total torsion angle, L is the total filament length and C is the torsion elastic
modulus equal to C ≈ 8 × 10−26 N m2 [29]. The difference between the actual torsion angle,
φ, and its spontaneous value, φS, represents the torsion strain, τ = φ−φS. Taking into account
that φ = φ0 +	φ, L = L0 +	L, and the above relationships, we obtain for the filament torsion
energy

FFIL = 1

2

C

λ(n0 + m0 + 	m + 	n)
(	φ − 	nφSS − 	mφSCR)2. (9)

1.4. Energy of formin cap turning

We further assume that the formin cap, while immobilized on the substrate, can rotate to some
extent generating deformation of formin itself and/or of the link connecting formin to the
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substrate and/or of the substrate itself. Resistance to such deformation will be characterized
by an effective rigidity of the formin–substrate complex, CL , and its energy FL expressed as

FL = 1
2 CL (	φ)2. (10)

1.5. Total energy of the system

The torsion elastic energy accumulated in the course of processive capping is determined by
the number of the stair-stepping steps, n, and screw steps, m. To obtain an expression for
the filament torsion energy, we first minimize the total elastic energy, FTOT = FFIL + FL with
respect to the torsion angle 	φ accumulated upon restriction of the filament rotation. Using
equations (9) and (10), we get the expressions for 	φ and the corresponding torsion strain τ :

	φ = C

C + CLλ(n0 + m0 + 	n + 	m)
(φSS	n + φSCR	m) (11a)

τ = CLλ(n0 + m0 + 	n + 	m)

C + CLλ(n0 + m0 + 	n + 	m)
(φSS	n + φSCR	m). (11b)

If the rigidity of the formin–substrate complex vanishes, CL ⇒ 0, the angle 	φ is simply
an addition to the spontaneous torsion angle accumulated as a result of 	n + 	m steps of
processive capping. In the case of a non-vanishing rigidity CL > 0, the torsion angle 	φ

differs from the spontaneous one and leads to building up of an elastic energy.

FTOT = 1
2 CEFF(φSS	n + φSCR	m)2, (12)

where the effective rigidity of the system, CEFF, is determined by the elastic moduli, C , KL ,
and the filament length, L = λ(n + m), according to

CEFF = CL C

C + CLλ(n0 + m0 + 	n + 	m)
. (13)

If the formin–substrate link is broken, CL = 0, the effective rigidity vanishes, CEFF = 0,
and, as expected, the elastic energy is not accumulated for any numbers of steps, n and m. For
an infinitely rigid formin–substrate complex, CL ⇒ ∞, the effective rigidity is determined
only by the torsion elastic modulus C of the actin filament,

CEFF = C

λ(n0 + m0 + 	n + 	m)
. (14)

1.6. Optimal regime of processive capping

The most favourable regime of processive capping corresponds to a minimal accumulation of
the elastic energy. Such a regime is determined by an optimal relationship between the number
of the stair-stepping, n, and screw, m, steps.

To find the optimal regime of processive capping, we have to determine which of the two
modes is most favourable for each step of polymerization. To this end we find the energy cost
of one processive capping step, which is performed after the system has undergone n0 + 	n
stair-stepping and m0 + 	m screw steps.

Based on equation (12), if the step is performed in the stair-stepping mode, its energy is

fSS = 1
2 CEFF(2φSS	n + 2φSCR	m + φSS)φSS. (15)

If the step proceeds in the screw mode, the corresponding energy is

fSCR = 1
2 CEFF(2φSS	n + 2φSCR	m + φSCR)φSCR. (16)
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The relationship between these energies (equations (15), (16)) determines what kind of
step will be most probable. A step of stair-stepping will be performed if fSS < fSCR, while in
the opposite case of fSS > fSCR, a screw step is more favourable.

Let us consider the first step after the beginning of the torsion stress accumulation,meaning
	n = 0, 	m = 0. In this case fSS = 1

2 CEFFφ
2
SS, and fSCR = 1

2 CEFFφ
2
SCR. Because φSS = 14◦,

and φSCR = −166◦, we obtain from equations (15), (16) that fSS < fSCR, so the first step will
be performed in the stair-stepping mode.

Calculation of the energies of the following steps shows that the next several of them will
also proceed in the stair-stepping mode. The first screw step comes after 	n∗ stair-stepping
steps, the condition for this event being f SCR(	n = 	n∗,	m = 0) < fSS(	n = 	n∗,	m =
0). According to equations (15), (16),

	n∗ = −1

2

φSCR + φSS

φSS
. (17)

Similar analysis shows that in the course of further polymerization, each screw step
happens after a sequence of

	n∗∗ = −φSCR

φSS
(18)

stair-stepping steps.
According to equations (17), (18) and the specific values of φSS and φSCR, the first screw

step happens after 5 to 6 steps in the stair-stepping mode, while each other screw step is
preceded by 11 to 12 stair-stepping steps.

Summarizing, the optimal regime of continuing processive capping consists of repeating
cycles, each of which includes a sequence of 11 to 12 stair-stepping steps followed by one
screw step.

1.7. Solution of the ‘rotation paradox’

Because the optimal regime of processive capping consists of cycles comprising alternating
stair-stepping and screw steps, the torsion angle and the elastic energy of the system change
periodically and remain within limited ranges during the whole course of polymerization.

To analyse this issue, we assume that the number of polymerization steps 	n + 	m
performed upon accumulation of torsion stress within the filament–formin is much smaller
than the number of the preceding steps, 	n + 	m � n0 + m0. This assumption does not
change the qualitative predictions of our model, but it makes the considerations easier.

Based on equation (11b) and equation (18), within the initial cycle and with a good
approximation within following cycles of the processive capping the torsion strain changes
between τ ′ = − 1

2
CL λ(n0+m0)

C+CL λ(n0+m0)
(φSCR + φSS) and τ ′′ = 1

2
CL λ(n0+m0)

C+CL λ(n0+m0)
(φSCR − φSS). The larger

the rigidity of the formin–substrate complex, CL , the larger is the amplitude of variation of the
torsion strain. A maximal amplitude corresponds to CL 	 C

λ(n0+m0)
. In this case, the difference

between the maximal and minimal torsion strains constitutes τ ′ − τ ′′ = −φSCR = 166◦. This
means that the torsion strain does not persistently builds up in the course of polymerization,
but rather varies within a limit of 166◦. The periodic variation of the torsion strain as a function
of the number of polymerization steps 	n + 	m for the case of CL 	 C

λ(n0+m0)
is illustrated

in figure 2(a).
As a consequence of the limited variation of the torsion strain, we predict that processive

capping will not result in super-coiling of the actin filament. This is in contrast to what
can be expected based on the pure stair-stepping model [21]. Indeed, according to the
elastic criterion [30], a filament undergoes super-coiling if its torsion strain exceeds a critical
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a

b

Figure 2. The optimal regime of processive capping consisting of repeated sequences of about 12
stair-stepping steps followed by one screw step. (a) The torsion strain as a function of the number of
polymerization steps after the beginning of accumulation of the elastic stresses. The torsion strain
changes periodically between the values of ∼−83◦ and ∼83◦ . The regions of the positive slope
correspond to the stair-stepping mode, while the regions of the negative slope represent the screw
mode. (b) Change of the elastic energy in the course of stair-stepping. The elastic parameters
used in the calculation are the actin filament torsion modulus C ≈ 8 × 10−26 N m2 [29] and
bending modulus K ≈ 3.6 × 10−26 J m [31, 32]. It is also assumed that the torsion energy starts to
accumulate after the filament reaches a length of 1 µm corresponding to the experimental design
of [21]. The energy changes periodically with slowly decreasing amplitude. The maximal energy
is reached in the first cycle and does not exceed ∼20kBT , where kBT ≈ 0.6 kcal M−1 is the product
of the Boltzmann constant and the absolute temperature. Reproduced from The Journal of Cell
Biology (2005) 170 889–93 with copyright permission of The Rockerfeller University Press.

value τ ∗ = 8.98K
C , where K is the filament bending modulus. The bending modulus of

an actin filament has a value K ≈ 3.6 × 10−26 J m [31, 32], while its torsion rigidity is
C ≈ 8 × 10−26 J m [29], so the critical torsion equals ≈232◦.
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Within the optimal regime of processive capping, the maximal absolute value of the
torsion strain equals ≈83◦ (figure 2(a)), which is smaller than the critical value. Hence, the
actin filament never reaches the torsion angle generating super-coiling.

The torsion elastic energy FTOT accumulated within the system in the course of
polymerization can be determined by combining equations (12) and (18). Variation of the
energy in the course of polymerization is illustrated in figure 2(b). Within one cycle of
polymerization the torsion energy changes between the values Fin = 1

8
CL C

C+CL λ(n0+m0)
(φSCR +

φSS)
2 and Ffin = 1

8
CL C

C+CL λ(n0+m0)
(φSCR − φSS)

2. The lower the rigidity CL of the formin–
substrate complex, the smaller is the elastic energy. The largest value of the elastic energy
corresponds to the case CL 	 C

λ(n0+m0)
. It is accumulated at the end of the cycle and

equals Fmax
TOT = 1

8
C

λ(n0+m0)
(φSCR − φSS)

2. Assuming that before imposing of the constraint
the actin polymers reaches the length of λ(n0 + m0) = 1 µm and using the parameter values
C = 8 × 10−26 J m, φSCR = −166◦ ≈ −2.9, and φSS = 14◦ ≈ 0.24, we obtain for the
maximal elastic energy Fmax

fin ≈ 20 kBT (where kBT ≈ 0.6 kcal M−1 is the product of the
Boltzmann constant and the absolute temperature).

Altogether, the cyclic variations of the torsion strain and the corresponding elastic energy
(figures 2(a), (b)) within feasible limits demonstrate that the suggested optimal regime of
the processive capping combining steps of the stair-stepping and screw modes resolves the
‘rotation paradox’ of the purely stair-stepping advancement of the formin cap.

1.8. Critical concentration of actin polymerization upon elastic stresses

A formin cap is an ideal molecular device mediating application of external forces to the end
of actin filament [5] or transmission of forces exerted by actin polymerization to external
objects [21]. Assembly of actin filaments produces forces which are responsible for different
forms of cell motility and, in particular, extension of cell protrusions [9, 10]. Force-dependent
actin polymerization could underlie such phenomena as stress fibre and focal adhesion
formation, driven by myosin II mediated contractility or by externally applied forces [33–36].
According to equation (5), the contribution to the chemical potential of polymerized actin,
	µ f resulting from a force f acting on the filament ends can be presented as

	µ f = − f l0, (19)

where l0 ≈ 2.7 nm is a change of polymer length resulting from addition of one actin monomer
upon the absence of any external force. We have omitted in equation (19) a contribution to
	µ f proportional to the square of the stress (analogous to the T 2 term in equation (5)) because
the ratio of the force f to the stretching rigidity of the actin filament κ is negligibly small.
Indeed, while the relevant range of intracellular forces covers the values between several to
several tens of pN, κ can be estimated as κ = Ea ≈ 1 × 105 pN, where E ≈ 2 × 109 N m−2

is the Young modulus of polymerized actin [37], and a ≈ 50 nm2 is the filament cross-section
area [38].

As shown above, formin can also mediate the action of the torsion moment on the filament
end. According to equations (15), (16), the change of chemical potential of polymerized actin
resulting from one stair-stepping step of polymerization, 	µSS, is

	µSS = 1
2 CEFF(2φSS	n + 2φSCR	m + φSS)φSS, (20)

whereas the chemical potential change caused by a screw step of polymerization 	µSCR is
given by

	µSCR = 1
2 CEFF(2φSS	n + 2φSCR	m + φSCR)φSCR. (21)
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Based on equations (6), (19) the critical concentration in the case where a pulling force acts
on the filament end, can be presented as

c∗ = c∗
0 exp

(
− f l0

β

)
. (22)

A moderate pulling force of f ≈ 3.5 pN reduces the critical concentration by an order of
magnitude, while a pushing force of the same absolute value results in one order of magnitude
increases of c∗.

Variations of the critical concentration produced by the torsion stresses, which are
generated in the course of the processive capping, depend exponentially on the changes of
the chemical potentials; see equations (20), (21). The critical concentration is not constant in
this case, but rather depends on the number of the processive capping step, 	n and 	m. For
the stair-stepping steps

c∗
SS(	n,	m) = c∗

0 exp

(
1

2β
CEFF(2φSS	n + 2φSCR	m + φSS)φSS

)
, (23)

while for the screw steps the critical concentration is

c∗
SS(	n,	m) = c∗

0 exp

(
1

2β
CEFF (2φSS	n + 2φSCR	m + φSCR) φSCR

)
. (24)

These results provide a basis for experimental verification of the stair-stepping and screw
mechanisms.

2. Role of elastic stresses in self-assembly of focal adhesions

2.1. Phenomenology of focal adhesion mechanosensitivity

Focal adhesions (FAs) are several-micron-large protein complexes, linking the cytoskeleton
to the extracellular matrix. An FA consists of a layer of transmembrane integrin molecules
and a multi-protein ‘sub-membrane plaque’. Integrins are integral membrane hetero-dimeric
proteins whose extracellular domains attach to the substrate while their intracellular domains
provide docking sites for the assembly of the plaque. The plaque is made up from a wide variety
of more than 50 types of different proteins [39]. Stress fibres—bundles of actin filaments,
myosin and actin binding proteins—are nucleated and developed at the cytoplasmic end of the
focal adhesion, on top of the plaque layer. The stress fibres are major generators of intracellular
contractile forces, which are transmitted via the FA plaque and the integrins to the substrate
(see the reviews [36, 39, 40]).

While most FAs are stationary structures, in some cases FAs become apparently mobile and
start crawling along the substrate in the direction of the force applied by the stress fibres [41–45].
It should be emphasized that, at the molecular level, both stationary and mobile FAs are dynamic
structures undergoing a continuous exchange of components with the diffusible cytoplasmic
pool, as evidenced by FRAP experiments [46, 47].

Mechanosensitivity of focal adhesions is manifested in the dependence of their shapes and
dimensions on the applied forces [35, 36, 48]. A developing FA usually acquires an elongated
shape with a finite length, determined by the direction of force and its magnitude. In most
cases the size of focal adhesions is proportional to the applied force [49].

The force-induced FA elongation is a reversible process. Impairment of the myosin
contractile activity by chemical or natural (e.g. caldesmon) acto-myosin inhibitors, reduces
the pulling forces and leads to shrinkage of the FAs (see the review [40]).

FA mechanosensitive behaviour is proved to be largely independent of the origin of the
pulling forces, as is seen when the actin–myosin contractile stresses are replaced by external
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Rear f ff ff ff ff

x

Front

Figure 3. One-dimensional aggregate subject to pulling forces, f (red arrows), and anchored to
substrate: illustration of the model. The points of force application and the points of anchoring are
distributed along the aggregate surface, each with its own density. Reproduced from Proc. Natl
Acad. Sci. 2005 102 12383–88 with permission.

forces applied either using a micropipette attached to the cell surface or via flexible substrates.
Such externally applied forces result in FA dynamics similar to that occurring under natural
conditions [48]. Finally, it is noteworthy that the force dependent growth of FAs is due to
protein self-assembly. This has been demonstrated by experiments showing a net addition of
new fluorescently labelled plaque proteins to the growing, stressed FAs [48, 49].

2.2. Modelling focal adhesions

A model for focal adhesions has been developed in [6], and its major results are presented here.
As shown above, the force-induced incorporation of new building blocks into the aggregate
proceeds unidirectionally. Therefore, to account for the major features of the system we
consider a one-dimensional aggregate consisting of identical molecules. The aggregate is
anchored to the substrate by links and is subjected to forces pulling along the aggregate axis
(figure 3). To describe the positions along the aggregate we choose the axis x originating at the
aggregate rear and directed towards its front (figure 3). The aggregate length will be denoted
by L.

We assume that the molecular exchange between the aggregate and the surrounding
medium can occur at every point along the aggregate length. Whereas the current data do
not provide an unambiguous support for this assumption, the rapid FRAP of paxilin [50]
and motion of vinculin within FAs [51] demonstrate that at least for the plaque proteins our
assumption is plausible.

In our model, the pulling forces are applied to the aggregate in discrete points. The value
of the force in each of such points, referred to below as the elementary force, is denoted by f .
One of the points of force application is located at the front edge of the aggregate (x = L),
while the others are distributed along the aggregate with a constant linear density φ f (figure 3).

The anchors are distributed along the aggregate with linear density φA and one of the
anchors is situated at the rear edge (x = 0) (figure 3).

Because of the distribution of the points of force application and the anchors along the
aggregate length, the stress γ (x) generated within the aggregate depends on the position within
the aggregate indicated by x . As a result, the critical concentration is also different for different
sections of the aggregate:

c∗(x) = c∗
0 exp

(
−γ (x)l0

β

)
. (25)

The molecular exchange between the aggregate and cytosol is determined by the
relationship between the concentration, c, and the critical concentration, 	c = c − c∗(x)

which set the flux J ∼ 	c of molecules towards the aggregate.
The non-assembled molecules tend to join the aggregate if Jc > 0, and leave the aggregate

if Jc < 0.
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Analysis of this model of focal adhesions [6] has shown that, depending on the system
parameters, different regimes of self-assembly are possible. The major parameter determining
the system behaviour is a ratio between the elementary pulling force multiplied by the molecular
length and the difference of the standard chemical potentials:

χ = f l0

	µ0
. (26)

There can be four different regimes of self-assembly, whose criteria are determined by
two characteristic values of the parameter χ :

χ = 1, and χ = χ∗ = 2φA

φA + φ f
. (27)

The two extreme regimes are an unlimited growth and unrestricted disintegration of the
aggregate. They correspond, respectively, to small and large values of the elementary force,
f , and, hence, also of the parameter χ (equation (26)).

(1) If χ is smaller than the both critical values equation (27),

χ < 1, and χ < χ∗, (28)

the total flux J is negative for any value of the aggregate length L, as illustrated in
figure 4(a). This means that the aggregate does not start to self-assemble. Alternatively, if
the force was initially large but has been dropped to a small value satisfying equation (28),
the aggregate disintegrates.

(2) If χ is larger than the two critical values,

χ > 1, and χ > χ∗, (29)

the total flux J is positive for any length (figure 4(b)) and the aggregate undergoes unlimited
growth.
The two other regimes correspond to intermediate values of the pulling force f .

(3) If the parameter χ satisfies

χ < 1, but χ > χ∗, (30)

the total flux is negative for the aggregate length smaller than a certain value L∗, but
becomes positive for L > L∗, as illustrated in figure 4(c). This means that the aggregate
does not self-assemble spontaneously for small lengths, but once it achieves the length
L∗, due to fluctuations or some unaccounted additional factors, the force-induced self-
assembly takes over and the aggregate starts to grow unlimitedly. This regime is possible
if the density of the anchors is smaller than that of the points of force application, φA < φ f .

(4) The final possible regime occurs when

χ > 1, but, at the same time χ < χ∗, (31)

the total flux J is positive for the small lengths L of the aggregate, meaning that the
pulling force initiates self-assembly. However, when the length reaches a particular value
Lst, the flux vanishes and for L > Lst becomes negative (figure 4(d)). This means that
the aggregate reaches a finite length L = Lst and stops growing. Hence, Lst is the finite
steady-state length. Moreover, as follows from (figure 4(d)), this steady state is stable.

A finite steady-state length of the aggregate is possible if the density of the anchors exceeds
that of the points of force application, φA > φ f . In this case, the steady-state length is given
by

Lst = 2

(φ f + φA)

(χ − 1)

(χ∗ − χ)
. (32)
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(a) (b)

(d)(c)

Figure 4. The total flux into the aggregate as a function of the aggregate length, L , in four different
self-assembly regimes, determined by the value of the dimensionless parameter χ = f l0

	µ0 . (a) At

χ < 1, and χ < χ∗ negative flux for all values of the length, meaning that the aggregate always
undergoes disintegration. (b) At χ > 1, and χ > χ∗ positive flux at every length, meaning that
the aggregate undergoes unlimited growth. (c) At χ < 1 but χ > χ∗ the flux is negative until
the aggregate reaches a certain length where the flux changes sign and starts increasing with the
aggregate length. This regime corresponds to unlimited growth after overcoming a critical length.
(d) At χ > 1, and χ < χ∗ the flux remains positive until the aggregate reaches a critical length. For
lengths larger than the critical values, the flux is negative. This corresponds to a steady-state size
of the aggregate. Reproduced from Proc. Natl Acad. Sci. 2005 102 12383–88 with permission.

According to equation (32), the steady-state length starts from zero at χ = 1 and increases
to infinitely large values at χ approaching χ∗.

The four possible regimes and the corresponding ranges of the parameters can be presented
as a phase diagram (figure 5).

All four regimes illustrated by the phase diagram (figure 5) have been observed in live cell
experiments (see the review [36]). A stationary FA self-assembles, and reaches a finite size
as long as pulling forces are acting on its surface. A decrease of pulling results in reduction
of the FA size [49]. Complete blockage of the pulling forces acting of the FA leads to its
disassembly [52, 53]. Also the mobile FAs have been shown to exhibit growing, shrinking or
a constant length in the course of their movement with respect to the substrate [41, 43, 44].
Hence, the mechanosensitive behaviour of stationary and mobile FAs can be understood based
on a thermodynamic principle, according to which self-assembly can be driven by the stresses
generated within an FA by pulling forces.

3. Conclusions

The aim of this review is to show that, according to general thermodynamics, elastic stresses
can determine the regime of molecular self-assembly, and that this phenomenon can be relevant
for intracellular processes. The examples of actin filament polymerization upon processive
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Figure 5. Phase diagram showing the different regimes of FA assembly–disassembly as a function
of the system parameters: the density of the points of force application along the aggregate length,
φ f , the density of the points of the aggregate anchoring to the substrate, φA , and the dimensionless

parameter χ = f l0
	µ0

. Reproduced from Proc. Natl Acad. Sci. 2005 102 12383–88 with permission.

capping by formin and of mechanosensitive behaviour of focal adhesions demonstrate that the
stresses developed between cytoskeletal elements are sufficiently strong to considerably change
the critical concentration of aggregation and, hence, to modulate the process of self-assembly.
We believe that the suggested non-specific thermodynamic mechanism provides a background
for mechanosensitivity of intracellular systems, while specific signalling mechanisms serve
for time and space modulation of molecular self-assembly adapting it to various biological
requirements.
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